Estrogen receptor α mediates the effects of notoginsenoside R1 on endotoxin-induced inflammatory and apoptotic responses in H9c2 cardiomyocytes
نویسندگان
چکیده
Estrogen receptors (ERs) are important for preventing endotoxin-induced myocardial dysfunction. Therefore, plant-derived phytoestrogens, which target ERs may also affect endotoxin-induced toxicity in cardiomyocytes. Our previous study revealed that notoginsenoside-R1 (NG-R1), a predominant phytoestrogen from Panax notoginseng, protects against cardiac dysfunction. However, the effects of NG-R1 on cardiomyocytes and the precise cellular/molecular mechanisms underlying its action remain to be elucidated. In the present study, pretreatment with NG-R1 suppressed the lipopolysaccharide (LPS)-induced degradation of inhibitor of nuclear factor-κB (NF-κB) α, the activation of NF-κB and caspase-3, and the subsequent myocardial inflammatory and apoptotic responses in H9c2 cardiomyocytes. An increase in the mRNA and protein expression of ERα was also observed in the NG-R1-treated cardiomyocytes. However, the expression pattern of ERβ remained unaltered. Furthermore, the cardioprotective properties of NG-R1 against LPS-induced apoptosis and the inflammatory response in cardiomyocytes were attenuated by ICI 182780, a non-selective ERα antagonist, and methyl-piperidino-pyrazole, a selective ERα antagonist. These findings suggested that NG-R1 reduced endotoxin-induced cardiomyocyte apoptosis and the inflammatory response via the activation of ERα. Therefore, NG-R1 exerted direct anti-inflammatory and anti-apoptotic effects on the cardiomyocytes, representing a potent agent for the treatment of myocardial inflammation during septic shock.
منابع مشابه
Portulaca oleracea protects H9c2 cardiomyocytes against doxorubicin-induced toxicity via regulation of oxidative stress and apoptosis
Abstract Background and Objectives: Doxorubicin as an effective chemotherapeutic agent is frequently used in various cancers. Nowadays, the application of doxorubicin is limited due to its cardiotoxic effects. The important mechanism which is involved in the cardiac injury of doxorubicin is the generation of reactive oxygen species; therefore antioxidant compounds may reduce cardiotoxicity. ...
متن کاملAkt mediates 17β-estradiol and/or estrogen receptor-α inhibition of LPS-induced tumor necresis factor-α expression and myocardial cell apoptosis by suppressing the JNK1/2-NFκB pathway
Evidence shows that women have lower tumour necrosis factor(TNF) levels and lower incidences of heart dysfunction and sepsis-related morbidity and mortality. To identify the cardioprotective effects and precise cellular/molecular mechanisms behind estrogen and estrogen receptors (ERs), we investigated the effects of 17 -estradiol (E2) and estrogen receptor (ER ) on LPS-induced apoptosis by anal...
متن کاملCrocin exerts improving effects on indomethacin-induced small intestinal ulcer by antioxidant, anti-inflammatory and anti-apoptotic mechanisms
Crocin is a plant-derived carotenoid and bears potent antioxidant property. Ranitidine (a histamine H2 receptor blocker) is used for peptic ulcer treatment. The present study was planned to investigate the effects of crocin and ranitidine on indomethacin-induced ulcer in small intestine of rats. Animals were randomized into two major groups including indo-methacin (10.00 mg kg-1...
متن کاملCombination of Nigella sativa with Glycyrrhiza glabra and Zingiber officinale augments their protective effects on doxorubicin-induced toxicity in h9c2 cells
Objective(s):The use of doxorubicin (DOX) is limited by its dose-dependent cardio toxicity in which reactive Oxygen Species (ROS) play an important role in the pathological process. The aim of this study was to evaluate the protective effect of three medicinal plants, Nigella sativa (N), Glycyrrhiza glabra (G) and Zingiber officinale (Z), and their combination (NGZ), against DOX-induced apoptos...
متن کاملPachymic acid protects H9c2 cardiomyocytes from lipopolysaccharide-induced inflammation and apoptosis by inhibiting the extracellular signal-regulated kinase 1/2 and p38 pathways.
Pachymic acid (PA), a lanostane-type triterpenoid and the major component of Poria cocos alcoholic extracts, has various pharmacological effects, including anti-inflammatory, anti-oxidative and anti-apoptotic. However, few studies have investigated the effects of PA on lipopolysaccharide (LPS)-induced H9c2 cell apoptosis and inflammation, or identified the possible mechanisms underlying these e...
متن کامل